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The paper presents a quantitative examination of some aspects of the molecular two-electron 
problem, using a calculation for a two-electron homonuclear bond based on a restricted set of one 
2s and one 2p orbital per nucleus. The single-determinant approximations with pure 2s STO's and 
with hybrid AO's are considered, as well as "partial" configuration mixing (CI) over MO's involving 
one hybrid per atom and "complete" CI over the whole four-orbital basis. The calculations simulate 
an exact calculation as regards hybridization and (left-right) correlation effects. These are studied, 
for the lowest state, at various distances, introducing the axial electron density as a means for inter- 
preting quantitatively the various effects. The importance of orthogonalizing the 2s AO's to the 
corresponding 1 s AO's and the MO's used to the MO formed by i s AO's is reviewed, pending further 
numerical analysis. 

Eine Untersuchung des molekularen 2-Elektronenproblems wird vorgenommen, wobei die 
2-Elektronenbindung zwischen gleichen Molekfilen mit einem beschfiinkten Satz eines 2s- und eines 
2p-Orbitals pro Kern berechnet wird. Es wird sowohl die Eindeterminantenn~herung mit reinen 
2s-STO's und Hybrid AO's als auch ,,partielle" CI mit einem Hybrid pro Atom und schlieBlich ,,voll- 
stiindige" CI fiber die gesamte 4-Orbitalbasis durchgeffihrt. In bezug auf die Hybridisierung und die 
Korrelationseffekte (links-rechts) simulieren die Rechnungen eine exakte Berechnung. F fir den 
tiefsten Zustand werden diese Effekte bei verschiedenen Abst~inden uutersucht, wobei die axiale 
Elektronendichte zur quantitativen Interpretation der verschiedenen Effekte eingeffihrt wird. Die 
Notwendigkeit der intra- und interatomaren Orthogonalisierung bezfiglich der Rumpfintegrale wird 
diskutiert. 

On pr~sente une analyse quantitative de quelques aspects du probl6me mol~culaire, g partir d'un 
calcul pour une liaison homonucl6aire g deux 61ectrons avec une base limit6e d'une orbitale 2s et une 
orbitale 2/? par noyau. On prend en consid6ration les approximations/l un seul d6terminant avec des 
orbitales 2s de Slater pures et avec des hybrides; et l'interaction des configurations <~partielle>> (une 
hybride par atome) et ~compl6te>> (toute la base mention6e). Les calculs simulent un calcul exact en 
ce qui concerne les effets d'hybridation et de corr61ation (left-right). Cenx-ci sont 6tudi6s, pour l'6tat 
le plus bas, ~ diff6rentes distances, la densit6 ~lectronique axiale servant pour interpr6ter quantitati- 
vement les diff6rents effets. On discute l'importance de l'orthogonalisation intra-atomique et inter- 
atomique par rapport aux orbitales du coeur. 

Introduction 

I n  r e c e n t  years ,  t h e  a t t e m p t s  to  t r e a t  c o m p l i c a t e d  s a t u r a t e d  m o l e c u l e s  h a v e  

l a r g e l y  c e n t e r e d  o n  t h e  i d e a  t h a t  a g o o d  s t a r t i n g  p o i n t  s h o u l d  b e  p r o v i d e d  b y  

f u n c t i o n s  d e s c r i b i n g  e l e c t r o n  p a i r s  l o c a l i z e d  b e t w e e n  t w o  n u c l e i  - ful ly in  l ine  w i t h  
t h e  c l a s s i ca l  t h e o r y  o f  Lewis .  S e v e r a l  p o i n t s  in  t h i s  a p p r o a c h  d e s e r v e  f u r t h e r  

a n a l y s i s  a n d  i l l u s t r a t i o n .  T h e y  r e d u c e  e s s e n t i a l l y  t o  t h e  q u e s t i o n :  h o w  s h o u l d  a n  

e l e c t r o n  p a i r  b e  t r e a t e d ,  as  a f i rs t  a p p r o x i m a t i o n ,  or ,  b e t t e r ,  as  a n  i d e a l i z a t i o n  o f  
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a bond, in order to give a satisfactory starting point for a reliable calculation, and, 
at the same time, in order to satisfy the need for visualization that especially the 
theoretical organic chemist feels so deeply? 

To a large extent, the question thus posed amounts to asking, on one hand, 
that the pair function introduced should include as much as possible of the 
intra-bond contributions to the molecular properties, and hence contain corre- 
lation; on the other hand, that it be practically a single determinant built out of 
simple LCAO MO's, so that the usual interpretation and visualization be applic- 
able to it (or that some picture having more or less the same advantages, and not 
requiring a complete revision of previous studies, be introduced in its place). 

The two requirements are contradictory to a large extent: for correlation 
corrections are just called in, by and large, to denote important effects that cannot 
be accounted for by an orbital picture - the latter being the only visualizable 
picture in so far as it introduces three space coordinates at a time. A general study 
of the whole problem arising in this way has been given by Mulliken [1], with 
several numerical examples. However, some aspects of it (especially hybridization 
and correlation at varying distances) cannot be effectively illustrated on existing 
calculations, because the latter relate either to diatomic molecules with all their 
electrons [2], or to approximations whose 'effect cannot be easily predicted [3], 
or, finally, to the hydrogen molecule, where one has in fact one electron pair, 
but the atoms come into play essentially with their ls  functions, certain corrections 
like hybridization [4] being relatively unimportant. 

In the absence of further information, we have considered it worth the while 
to study systematically the simplest form of the two-electrons-two-nuclei problem 
in an idealized and simplified but internally rigorous and consistent way. More 
precisely, we have considered a system of two electrons in the field of two equal 
nuclei, treated on a basis of 2s and 2pa orbitals with partial and 'complete' con- 
figuration mixing (CI). The very simplicity of the problem makes a systematic 
study of it very instructive; the more so, because CI can simulate the introduction 
of correlation, while the fact that we have 2s and 2pa orbitals allows a study of 
hybridization in a case where it should not be so small as in the hydrogen molecule. 
A study somewhat complementary to ours has been recently published [51. 

General Comments  on the Calculations 

In a model calculation like ours it is advisable to start by ignoring the ls core 
orbitals; therefore, the 2s orbitals have not been made orthogonal to the ls 
orbitals, nor, which is more important, to the l a  bond orbitals of the core. The 
consequences of this will be discussed below. 

We call our calculation a model in the following sense: given the four Slater 
orbitals mentioned above, 2s A, 2sB, 2paA, 2pa~, with A and B equal atomic cores 
having some appropriate effective charge, we consider this minimal set formally 
as a complete set and consider all the singlet configurations symmetric with respect 
to the centre of symmetry of the system, thus carrying out formally a complete 
calculation for the states of the given symmetry. Using the letters s and p to denote 
the kind of orbitals, and the letters g and u to denote their symmetry with respect 
to an inversion of the nuclei, we can denote the four basic molecular orbitals by 

s9, su, pg, pu, (1) 
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where, e.g., 1 
sg stands for (2S n + 2SB) , (2) 

V2(1 + Sss) 

and Ss~ is the overlap integral between the 2SA and 2SB AO's. 
The configurations that can be built from the orbitals (1) with g symmetry 

are evidently six, which we shall denote as follows: 
1 

V 1 = ~ - { s g ( 1 ) ,  ~-~(2)}, 
F 

1 
V2 = ~ -  {pg(1), ~--j(2)}, 

v 

V3 = l [{sg(1) ,  p--0-(2)} + {pg(1), ~(2)}], 
/ . . ,  

1 (3) 
V4 = ~ -  {su(1), g-if(2)}, 

F 

1 
Vs = ~ -  {pu(1), ~--ff(2)}, 

F 

V6 = -l[{su(1), ~--ff(2)} + {pu(1), gg(2)}]. 

Here, as is conventional, different spins are denoted by the presence or the absence 
of a bar; only the main diagonal is given to represent each Slater determinant, 
and all the determinants are normalized; however, the set of the six configurations 
is not orthonormal. The reason for this is, of course, that the pairs of orbitals sg, 
Pg and su, pu  are not orthogonal to one another. Of course, they can be made so 
by suitable hybridization, but this involves an elaboration unnecessary for the 
calculations as such. The overlap matrix of the set chosen is given by: 

(v l ,  v l )  = (v2 ,  v2) = (v4 ,  v , )  = ( v s ,  vs )  = 1 ; 
2.  ([76, g6) : 1 ~- t 2" (V3, V3) = 1 + tg, 

(V1, V3) = (V2, V3) = (V3, V1) = (Vs, V2)= ]/2tg ; (4) 

(V3, V6) = (V4, V6) = (V6, V3) = (V6, V4) = ]~tu, 
where the parentheses denote integration over the whole configuration-spin 
space, and 

t o = (sg, pg ) ,  

t ,  = (su, pu) , 

are overlap integrals between molecular orbitals. All the (V i, Vj) integrals not given 
in (4) are zero. 

Coming now to the actual computational work, we point out that, granted the 
double idealization consisting in treating only two electrons with a four-orbital 
basis, no approximations need be introduced, for all the required integrals can be 
found in the literature [6], or calculated quite easily, including exchange integrals. 
Of course, there are some parameters (not considered as variational ones) on which 
the various quantities depend; they are: 

the orbital exponent ~; 
Q; 

the internuclear distance R = - -  

the effective nuclear charge Z.  

27* 
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The latter parameter has forced us to refer to actual atoms in choosing e and Z. 
We have done so, referring to Lithium (e = 0.65, Z = 1.30). Therefore, our model 
is strictly related to a real bond, even though we have allowed ~ = eR to vary over 
a wide range of values; however, we have ascertained that our general conclusions 
hold also for bonds with different Z and c~ values. 

So far, w6 have not mentioned hybridization. It is a common tenet that 
hybridization reduces the importance of configuration mixing. A discussion of 
this statement has been given in Ref. [1], but, again, further numerical analysis 
of the matter is desirable, especially as regards L-shell orbitals. 

Mathematically speaking, the relation between hybridization and CI can be 
seen very easily by remarking that the introduction of hybrids with use of just one 
Slater determinant corresponds to a special reduced CI. For instance, considering 
the g molecular orbitals between hybrids of parameter 2 = tg r we have: 

N{asg(1)+bpg(1),a~'~(2)+bp-O(2)}=N{a2Vl +b2V2+abl~V3} ,  (5) 

where 
1 

a=] /2 ( l+Ss ,  ) cos~b, b = ~ + S p p )  sinq~, N =  2(l+Shh) , (6) 

with Ss,, Spp, and Shh the overlap integrals between the orbitals indicated as 
subscripts, on atoms A and B, respectively (h denotes the hybrid AO cosq~(2s) 
+ sin q~ (2pa)). It is clear that for hybridization to account for most of the properties 
of our model very special circumstances must take place. In the general case the 
coefficients of V1, 1/2, V3 in the wave function will not be related in this simple 
way with vanishing coefficients of V 4, V s, V 6. We are, of course, interested in the 
conditions under which this is at least approximately so. 

It is easily seen that the situation here is entirely parallel to the situation 
one has in connection with correlation proper, the hybrids playing the r61e of the 
Hartree-Fock orbitals (expanded as LCAO MO's), our 'complete' configuration 
mixing on the four AO's given playing the r61e of actual CI. 

Results and Discussion 

In the following, we shall consider only results relating to the ground states, 
unless otherwise stated. 

1. Effect of Hybridization 
We can consider as the reference calculation, in our model, a single-determinant 

calculation involving only the 2s orbitals. We shall then assign to hybridization 
the differences between that simplest description of the two-electron bond and 
the description obtained by replacing the 2s orbitals by hybrids with sin ~b varying 
from 1 to - 1. The energies obtained in this way are given as functions of ~ = c~R 
and of the hybridization parameter 2 = tg r (see Eq. (5)) in Table 1. 

One sees immediately that the energy of the one-determinant approximation 
is very sensitive to changes in hybridization. In every case, hybrids pointing 
towards one another give a lower energy than hybrids pointing away from the 
bond; but only for low Q's does hybridization result in a significant stabilization 
of the bond, the value of 2 for which the energy is lowest tending to 0 quite rapidly 
for increasing Q's. Although we shall not discuss here cases with Z and 2e other 
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Table 1. Electronic energies a in a single determinant approximation over hybrids with different 
p-characters and different values of  0 (see text) 

1 2 3 4 5 6 7 

+oe -1.598 -1.117 -0.867 -0.727 -0.638 -0.576 -0.528 
4.83 -1.747 -1.247 -0.949 -0.780 -0.675 -0.603 -0.550 
2.31 -1.705 -1.320 -1.017 -0.833 -0.717 -0.639 -0.583 
1.33 -1.617 -1.350 -1.071 -0.885 -0.766 -0.686 -0.630 
0.75 -1.513 -1.342 -1.110 -0.939 -0.824 -0.748 -0.696 
0 - 1.301 - 1.202 - 1 .072  -0.961 -0.880 -0.824 -0.768 

-0.75 -1.030 -0,857 -0.761 -0.707 -0.671 -0.644 -0.624 
-1.33 -0.858 -0,699 -0.648 -0.617 -0.591 -0.568 -0.547 
-2.31 -0.784 -0,740 -0.679 -0.627 -0.584 -0.549 -0.519 
-4.83 -1.100 -0.928 -0.771 -0.673 -0.606 -0.556 -0.517 
- o r  -1.598 -1.117 -0.867 -0.727 -0.638 -0.576 -0.528 

a in a.u. 

than 1.30, we repeat that this behaviour is typical of other values of Z and e - i.e., 
takes place also for the corresponding models of bonds like C-C, N-N, etc.: 
for larger Q's an isolated bond is described, in a single determinant approximation, 
by a combination of pure 2s orbitals. Considering the important r61e assigned 
to hybridization in the current qualitative theory of the chemical bond, one can 
reconcile the latter with this result by concluding that the equilibrium distances 
usually correspond to low values of Q, and/or that hybridization is mainly an 
inter-bond effect characteristic of polyatomic molecules. The first conclusion is 
supported by the circumstance that, if our calculations are referred to the Li 2 
molecule, the equilibrium distance corresponds to 0 = 3.28; around this value 
not only is hybridization a major factor in the stabilization of the system, but the 
hybrids for which the electronic energy is at a minimum are maximum-overlap 
hybrids. As regards the second remark, one need just recall that the situation 
corresponding to the minimum of energy for a fictitious isolated two-electron 
bond at a given ~ does not correspond necessarily to the situation of the same bond 
in a polyatomic molecule. 

Coming back to Table 1, one may wonder why should hybridization be 
important only at low values of ~ (see also Table 2). The explicit calculation of 
the appropriate limit gives answer to this: for Q -~ 0, one tends to the united atom, 
for which, as we have not imposed any orthogonality with respect to l a9  MO, the 
lowest state is the limit of a P9 molecular orbital, i.e. essentially a ls orbital. Thus, 
we find again a well-known result, that the s 9 orbital for the atoms at large 
distances goes over to an s orbital of the united atom; our results illustrate the 
fact that this takes place through a gradual increase in the p-character of the two 
AO's forming the bond, which become pure 2po- orbitals at very low values of ~. 

Shifting our point of view, we can imagine that changes in ~ correspond to an 
actual physical process of slow motion of the atoms involved. In this perspective 
we have interest in formulating some sort of mechanism for the important "orbital 
adaptation" that takes place especially around small values of 0. 

A number of quantities associated with the minimum-energy hybrids for 
different values of ~ are given in Table 2. The optimum-hybrid energies for the 
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various O's are not  s trongly correlated with the overlap integrals (while the sg 
energies are); one can only add to a previous remark  that  just  a round  the equilib- 
r ium distance ofLi2,  where 0 = 3.28, the difference between the overlap correspond-  
ing to the op t imum hybrids and the overlap for pure 2s orbitals is at a maximum.  

A very impor tan t  index of  the effect of  hybr idizat ion is perhaps a quant i ty  d 
defined as the ratio between the squares of  the 9 hybrid  (hg) and s9 M O ' s  along 
the internuclear axis between the nuclei: 

1 + S ~  cos2~b(l ,+]/~tg~b)2 (7) 
d -  l + Sh h 

this quant i ty  is independent  of  the posi t ion considered, and follows a trend 
indicating that  hybr idizat ion tends to concentra te  the charge between the nuclei, 
with respect to a pure-s M O  as the nuclei come closer to each other, wi thout  
changing the shape of  the curve axial density vs. 0. A more  detailed analysis further 
shows the expected fact that, for low O's, the density along the axis has a pro-  
nounced  max imum  at the centre of  the bond,  whereas, for higher O's, two maxima 
roughly  corresponding to the maxima  of  the 2s orbitals appear,  even though  the 
density at the centre of  the bond  remains higher than at the nuclei (Table 2). 
No te  also that, whereas the peak at the centre of  the bond  is highest when O = 2 
for a pure-s MO,  it becomes higher and higher for 0 - - ' 0  when hybridizat ion is 
introduced.  

Table 2. Analysis of the one-determinant approximation 

Q 1 2 3 4 5 6 7 

c s 0.217 0.662 0.909 0.975 0.992 0.997 0.998 
2 4.498 1.132 0.459 0.228 0.127 0.078 0.063 
S~ 0.9483 0~8150 0.6373 0.4563 0.3025 0.1879 0.1106 
Shh --0.5404 0.6905 0.9450 0.6308 0.3950 0.2237 0.1286 
d 15.422 4.123 2.271 1.650 1.366 1.231 1.215 
E~ - 1.3005 - 1.2020 - 1.0722 -0.9613 -0.8803 -0.8244 -0.7859 
Ehh --1.7474 --1 .3515 --1 .1199 --0.9786 --0.8857 --0.8268 --0.7872 
xm 0 0 0 0 _ 1.290 _+ 1.914 _+ 2.478 
P0(0) 0.0220 0.0348 0.0318 0.0212 0.0180 0.0162 0.0154 
P~(0) 0.3394 0.1434 0.0722 0.0350 0.0245 0.0200 0.0187 

Explanation. The symbols c s denotes the coefficient of the 2s orbitals in the hybrids giving the 
minimum energies for the values of listed; 2 = tg~b = ] / ~ / e ~  is the corresponding hybridization 
parameter; S,~ and Shh are the overlap integrals for pure 2s AO's and for the hybrids specified above; 
d is the ratio between the electron densities for the MO's formed by the hybrids and by pure 2s AO's 
along the internuclear axis; Es~ and Eh~ are the calculated energies with 2s AO' and optimum hybrids, 
resp., in a.u. Finally, xm denotes the position of the maximum density along the axis (in units of Q 
counted from the centre of the bond) between the nuclei; Po (0) and P+(0) are the values of the density 
at the maxima for the non-hybridized and the hybridized case. 

2. Partial Correlation 

As has been said, in our  model  calculations we shall call "correlat ion" effects 
what  cannot  be accounted  for by hybr idizat ion -- even though  the latter corre- 
sponds already to partial configurat ion mixing; this point  of  view is strictly 
parallel to  calling correlat ion effects all those effects that  cannot  be reproduced 
by a single determinant  approx imat ion  no mat ter  what  combina t ions  of  Slater 
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AO's one chooses as "predetor" functions (which is to say, all that goes beyond an 
exact H F  calculation [7]). However, we can think now of two steps in the 
configuration mixing going beyond the hybridization step" one, where a restricted 
basis of one hybrid per atom is used, the other where all the configurations (of 
appropriate symmetry) arising from the four-orbital basis chosen are used. We 
shall call the former "partial correlation", and investigate it before studying the 
latter. Here again, we find some well-known and some less well-known results 
illustrated in our calculation. 

First of all, partial correlation leads to energies that have a minimum practically 
for the same hybrids as those giving a minimum-energy one-determinant function, 
a very slight increase in s-character being noticeable for high Q's. Second, as ap- 
pears from Table 3, the effect of partial correlation becomes more and more 
important as 0 increases, following a trend opposite to hybridization effects. 
In other words, we deal here with a really new effect whose importance becomes 
greater and greater as the atoms come apart. This is evidently due to the fact 
that correlation is indeed an inter-electronic effect. Except at very low O's, the 
energy correction compares in magnitude with that due to hybridization. 

Table 3. Successive corrections to the energy of  a single determinant wave functions over 2s orbitals (a), 
after optimum hybridization (b), CI with one hybrid per atom (c), CI with two pure Slater AO' s per atom (d), 

for increasing values o f  Q = c~R 

Q (a) (b) (c) (d) 

1 -1.3005 -0.4469 -0.0002 -0.0059 
2 - 1.2020 -0.1495 --0.0004 --0.0006 
3 - 1.0722 -0.0477 --0.0029 --0.0016 
4 -0.9613 --0.0155 -0.0144 -0.0017 
5 --0.8803 -0.0054 -0.0337 --0.0022 
6 -0.8244 -0.0024 -0.0527 -0.0018 
7 -0.7859 -0.0013 -0.0663 -0.0010 

Note. The minimum energy after "complete" CI is obtained by summing the contributions (a), 
(b), (c), (d). Energies in a.u. 

An idea of what the new effect means in terms of electron density can again 
be given as a ratio along the internuclear axis. In general, given two MO's  h9 
and hu, corresponding to the sum and to the difference of two hybrids of parameter 
2 = tg qS, respectively, we can write the CI function as 

lp = cosco{hg, hg} + sinco {hu, hu}. (8) 

Calling P+ (co) the one-electron density associated with ~p (so that P+ (0) corresponds 
to a single determinant over h9 MO's, and Po(0) to the reference case of a single 
determinant over sg MO's), the ratio P+(co)/P4,(O) may be used to represent the 
relative change in the electron density with respect to the single-determinant 
approximation (Fig. 1). Using the standard elliptical coordinates ~ and q, we have, 
along the axis between the nuclei (4 = 1) 

P+(coll, t / ) - 1 +  1-'[-Shh t / - t a n h ~  2 i] 
d~(1, t / ) -  p+(o[1, ~ ) [TL-S~-h ( ~ - Z - t / ~ ) -  sin2 (n. _] (9) 
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In particular, at the centre of the bond, where t /= 0, and at the nuclei (q = + 1): 

2Shh sin2 co" (10) d~(1, q) = cos2co ; d~(1, _ 1) = 1 + 1 - S h ~  

These results provide an illustration of the fact that the CI tends to decrease the 
electron density at the centre of the bond while increasing that at the nucle i ,  
thus producing an effect qualitatively different from that of hybridization, which 
left the shape of the density along the internuclear axis unchanged, while multi- 
plying the values by a factor larger than unity. The two effects, however, are related 
to each other, because both depend on Sha; only at the centre of the bond the change 
in density produced by CI is independent of Sha, and, for small values of co, is 
quite small. At the nuclei, the density relating to a single determinant may be multi- 
plied by a very large factor, if Sah ~ 1 (as happens, in our calculations, for 0 ~ 3). 
This means that, the higher the overlap, the higher the effect tending to restore 
the electrons on the nuclei. How large this effect can be is shown by the detailed 
numerical study given in Table 4. For  Q = 1, where the two nuclei are very close 
to each other, d~ is everywhere very slightly lower than 1; this is in agreement 

@--2 
Po(O) 

e--5 
Po(O) 

Q=5 
P, (0) 

/L 

~o--2 

Fig. 1. One-electron densities along the internuclear axis associated with a single-determinant function 
over s9 MO's [Po (0)], with a single-determinant function over h9 MO's EP~ (0)], and with a CI function 

over h9 and hu MO's [P+(co)], for Q = 2 and 0 = 5 

with the fact that we are quite close to the united atom. When Q increases, more and 
more charge is pushed away from the centre toward the nuclei, as the one-deter- 
minant wave-function becomes less and less reliable [1]. Around 0 -- 5 the charge 
density at the centre of the bond is reduced by 25 % with respect to the one- 
determinant approximation, so that the CI compensates the effect of hybridization, 
giving again the same density as the s9 MO. At the same time, however, the 
density at the nuclei increases by over 30% with respect to the h9 case, i.e. by 
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Table 4. Values of the coefficient cose) of the CI over one hybrid per atom (with parameter 2 = tg4), 
see Table 2) and ratios d~ of the corresponding electron densities to those of the one-determinant 

approximation over hybrids. The parameter r 1 is 2/R the distance from the centre of the bond 

- - . . .  
c o s ~  0 0.2 0.4 0.6 0.8 1.0 

1 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
2 0.999 0.999 0.999 0.999 0.999 0.999 1.005 
3 0.997 0.994 0.996 1.000 1.003 0.996 1.203 
4 0.958 0.917 0.931 0.964 0.997 0.996 1.283 
5 0.860 0.739 0.789 0.902 1.007 1.048 1.341 
6 0.774 0.599 0.689 0.867 1.006 1.069 1.231 
7 0.733 0.536 0.663 0.875 1.009 1.061 1.137 

over 80 % with respect to the reference so case. At the maximum of Po (0), the change 
is quite variable (see also figure). This is an illustration, in the case of L-shell 
hybrids, of a well-known correlation effect. 

3. Complete Configuration Mixin 9 

In our model, the equivalent of an exact calculation is the determination of the 
linear combination of all the six configurations 1/1 . . . .  , V6 of Eq. (2) which minimizes 
the corresponding energy. The new corrections to the total ground-state energy 
for various Q's are given in Table 3. They are very small everywhere, thus proving 
that a single hybrid per atom is sufficient, at least in the case of homonuclear bonds, 
to give energies accurate to 0.05 eV, except for very low values of 0, where the 
correction rises to 0.2 eV. From the chemical point of view, these corrections 
may be important  for quantities like rotational barriers, but are already minor 
corrections. 

The meaning of the small effect of complete CI is difficult to analyze; the only 
thing we can say off-hand is that apparently the elements of the eigenvectors of the 
complete Hamiltonian over V1, ..., V 6 are related among themselves so that the 
two variational parameters on which the partial CI depends are sufficient to give 
practically the correct result. 

A way for seeing how far this is true can be found as follows. We have seen that 
1 

%0(2) =- ~ {hg, h-g} = (a 2 V~ + b 2 V 2 q- ]/2ab V3)N]/2 (11) 

with a, b, N given by Eq. (6) and all functions of 2 -= tg q~, the hybridization para- 
meter. Let us introduce the new hybrids I = cos Z 2s x + sin K 2pa x (with X =- A, B), 
letting p = tg ~( be the new hybridization parameter. 

We can then write a new expression for the ground-state complete-CI wave- 
function 

~p = Za, V, = aWoo(2 ) + fl W,u(2 ) + y Wg0(#) + 5 W,,(#),  (12) 

which is particularly instructive in the light of the actual values of 2, p, a, fi, 7, 5, 
derived from the values of the ai's. As could be expected, one configuration over 
hybrids pointing one towards the other (2 > 0) is always predominant, but the 
corresponding value of 2 (or of cosqb) may be quite different from that found by 
the one-determinant calculation. The reason for this is, of course, that the Ritz 
method is not a perturbation method, and, by extending the basis, one modifies 
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the coefficients of every element. In addition, it is found that sometimes (for 
close to 1) the most important contribution after that of Woo(2) (with 2 close to 
the 2 of Table 2) is that of W,,(#), whereas in other cases (for Q > 4), it is that 
of Wu, (2). This again corresponds to the qualitative difference between the limiting 
cases ~ ~ 0 and Q ~ .  Table 5 gives some results obtained by the above analysis 
of ~p. 

Table 5. Analysis of ~he "complete" CI in terms of non-orthogonal hybrids 

q cos~ cosx ~ fl V 6 

1 0.2286 0.9767 0.9970 0.0107 -0.0212 -0.4538 
3 0.9317 0.7298* 1.0079 -0.0756 -0.0611 -0.0196 
5 0.9823 0.7813 1.0828 -0.8111 -0.2749 0.3122 

Note. For the meaning of the symbols, see Eqs. (11) and (12). The values of cos ~b and cos ~ are given 
instead of 2 and # because the latter are tangents, and emphasize too much slight differences between 
cosz of this table and cs of Table 2. The starred value of cos g corresponds to a hybrid pointing away 
from the bond, all the other hybrids point one towards the other. 

4. Effect of  Orthogonalization 

In this article we have not considered explicitly the question of orthogonali- 
zation; however, some remarks on the importance of the latter are in order. 

There are three kinds of orthogonalizations important in our problem: the 
orthogonality ls, 2s for the same atom, the orthogonality of the L-shell MO's 
used to the K-shell MO's, in particular N(lsa + lsB), and the orthogonality of 
the L-shell MO's to one another. 

The latter is clearly unimportant, because the calculations take account of the 
non-vanishing overlap between the orbitals used. The other two are important 
in so far as they affect the input data. 

The intra-atomic orthogonality between L-shell and K-shell orbitals is quali- 
tatively different from the corresponding inter-atomic condition, for it leads to 
important effects at all distances, and affects only the 2s AO's. What should be 
expected from this orthogonalization? In order to answer this question we have to 
consider the limiting cases of very low and very high values ofo. For the latter, only 
the intra-atomic integrals are affected by the orthogonalization, for the lsA con- 
tribution on terms of the energy expression relating to B (and vice versa) is negli- 
gible. Therefore, as regards the energies for the atoms very far apart, intra-atomic 
orthogonalization to the ls orbitals is equivalent only to a shift in zero-point. 

In order to discuss the situation when the atoms are very close to each other, 
we consider the form of an s'g orbital (where the prime denotes orthogonality 
of each 2s orbital to the ls, or k, orbital of the same atom) 

V l+Sss ( s g - - 2 ~ l d - S k k k g )  (13) 
s' g = n 1 + S~, s, + S~s ' 

where 2 is the 2 s -  ls orthogonalization parameter and n the corresponding 
normalization factor. We can thus expand the configuration 1/1/2 {s'g, s~} = V~ 
in the form (5) 

V1 = ] ~ N ( V  1 -J- V 2 V 7 - J - / ~  Vs) , (14) 
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with the conventions 

�9 1 /1  + Skk n 2 (1 + Sss ) Y = 2 

N =  + s . , ) '  v l + S . '  
and 

1 

1 
= {kg, kg} 

1 
V8 = ~-]{kg, -g-g+ so, kg}[. 

(15) 

(16) 

Clearly, only if b' is very small can V 1 replace V~', but that can happen only if 2 
is small. Consequently, we must presume that the effect of intra-atornic ortho- 
gonalization will be quite large at short distances. Table 6 illustrates the above 
remarks, and further shows that this type of orthogonalization leads to an increase 
in energy of the Vs configuration with respect to V1. This corresponds to a sort 
of repulsion of the core electrons on the binding electrons [8]. 

This kind of correlation does not apply, of course, to the 2p o- orbitals. Keeping 
in mind that, as we have seen, the latter AO's predominate when Q decreases, as 
far as the minimum-energy situation is concerned, we may conclude that the 
effect of intra-atomic orthogonalization on minimum energies is roughly constant, 
as is brought out in Table 6, where one can see also that the optimum hybrids 
follow the same trend as in Table 2, but tend more rapidly to pure p's when Q ~0 .  

The other type of orthogonalization we must consider is a much more impor- 
tant one, discussed by Coulson and Lester in connection with the hydrogen 
molecule [91. We have already mentioned it in the discussion of the effect of 
hybridization, when we have pointed out that our variational procedure gives 

Table 6. Effect of intra-atomic orthogonalization 

1 2 3 4 5 6 7 

S 0.9376 0.8185 0.6741 0.5143 0.3621 0.2370 0.1457 
AS 0.0107 -0 .0035 -0 .0368 -0 .0580  -0 .0596 -0 .0691 -0 .0351 
Es, ~, -1 .0045 -0 .9722  -0 .8916  -0 .8010  -0 .7249 -0 .6700  -0 .6228 
AE(s') 0.2960 0.2298 0.1806 0.1603 0.1554 0.1554 0.1631 
G' 0.090 0.410 0.730 0.890 0.950 0.970 0.980 
Eh, h, -- 1.6321 -- 1.2162 --0.9857 --0.8422 --0.7455 --0.6807 --0.6298 
AE(It) 0.1153 0.1373 0.1342 0.1364 0.1402 0.1461 0.1574 

Notes. a) The orthogonalized s' orbitals used here were taken in the form N ( r -  k)e -~" and not  
as linear combinat ions  of the ls  and 2s orbitals. This procedure is slightly worse, from an atomic 
point of view, than  the current  one, but  presents several advantages, in particular as regards the intro- 
duction of exchange integrals; nor  is it much  less justified than the usual Schmidt orthogonalization 
[10, 11]. 

b) The symbols have the following meanings:  S is the overlap integral for the s' AO's,  and AS 
its difference from S~s; Es, s, is the single-determinant energy over s' AO's;  Eh, h, is the corresponding 
energy over op t imum hybrids whose s' coefficient is %; A E(s') and A E(t/) are the differences between 
these energies given and those without intra-atomic orthogonalization. 

c) The energies are given in a.u. 
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a ground state converging practically to a ls orbital of the united atom. Now, the 
usual correlation diagrams assume that an sg MO of separated atoms goes into 
a 2s orbital of the united atom, thus having a node on the nucleus, not a peak. 
Yet, our results are fully consistent with a correct variational procedure, for, 
as our sg, pg, and su, pu MO's are not orthogonal to the kg and ku MO's, respec- 
tively, they must necessarily tend to the lowest state of the united atom, and, in 
general, to a 1% state of the two electrons. Here again, the fact that a modified 
nuclear charge has been used is very important, for the energy obtained can never 
attain the values of a true 1% MO; but the electron distribution found can come 
close to that corresponding to MO's of this type. 

The effect of inter-shell inter-atomic orthogonalization can be seen again as a 
sort of inter-shell correlation. In this case, however, the behaviour of the energy 
at different values of Q is qualitatively different from that seen for the previous case, 
especially because now also the pg and pu orbitals must be modified, and in fact 
it is the latter modification that becomes important at low values of 0. 

The overlap integrals between the MO's (1) and kg, ku are: 

(sg, kg) = 2(S o + Sk~ ) , 
(su, ku) = 2(So - Sk~), 
(pg, kg) = 2S , . ,  (17) 

(pu, ku) = - 2Skp. 

From the actual values of these integrals for an orbital exponent of the ls AO 
equal to 2.70, one finds that indeed the correction for orthogonalization does not 
alter significantly the qualitative behaviour of the results as long as 0 is larger 
than 3; for a lower 0, it does, so much that a pg MO made orthogonal to the kg 
orbital tends to a 2s AO of the united atom, whereas, as has been mentioned, 
normally it tends to ls-like AO. 

We shah take up this question quantitatively in subsequent work. Here we 
note only that the configuration Vz is everywhere orthogonal to V1 and so is the 
excited state function obtained by partial CI with respect to the ground state one. 
Thus, we can have an idea of the effect of inter-atomic orthogonalization just by 
considering the excited states. Referring to calculations where the intra-atomic 
orthogonalization has been performed, we find indeed not only much higher 
energies, but, for appropriate O's, energies close to those one should exPect from 
existing calculations on the Li 2 molecule. 

Conclusion 

The results and remarks presented here are only a first step in a new analysis 
of the two-electron problem. In fact, notwithstanding the deep pioneering work 
of Slater, Mulliken, Coulson and others [!2],  it seems that the rise of large com- 
putors has led people to attack directly more complicated problems, without 
laying the ground for an analysis of their results by simpler calculations, so that 
new interest in simpler basic questions has arisen only quite recently. Of course, 
many aspects of the present analysis are discussed in other publications; in parti- 
cular, as regards hybridization, in Ref. [13]; however, as has been said, a model 
calculation like ours has the great advantage of representing a simple faithful 
parallel to more complicated problems concerning the chemical bond, and 
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especially hybridization and correlation, Therefore, we intend to deepen and 
complete the above analysis in further work. 
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